Dougherty Valley HS Chemistry Fall Final Exam - Practice Test

This practice test is a general guideline to help you study. It is NOT a definitive list. There are potentially things on here that will not show up on the test, and there are potentially things not on this list that will show up on the test. Material that appeared in Warm Ups, Notes, Homework, Classwork, Labs, Study Materials, etc are all have the potential to appear on the test. Please time yourself! This practice test should take a maximum of 140 minutes to ensure you are going fast enough to finish the actual Test in class!

- 1. What is the correct chemical formula for copper(II) oxide?
 - A) Cu₃O₂
 - B) Cu₂O₃
 - C) CuO
 - D) CuO₃
 - E) Cu₃O
- 2. List the three main subatomic particles.
- 3. An example of a chemical change is
 - A) an ice cube melting in a drink
 - B) digesting a pizza
 - C) coffee spilled on a shirt
 - D) boiling alcohol
 - E) grinding coffee beans.
- 4. With which of the following would fluorine atoms MOST easily combine to form an ionic compound?
 - A) sulfur
 - B) carbon
 - C) oxygen
 - D) chlourine
 - E) Sodium
- 5. The correct formula for iron(III) phosphide is
 - A) FeP₃
 - B) Fe₃P
 - C) Fe₂P₃
 - D) FeP
 - E) Fe_3P_2
- Consider a certain type of nucleus that has a half-life of 32 min. Calculate the percent of original sample of nuclides remaining after 2.5 hours have passed.
 - A) 40 %
 - B) 3.9 %
 - C) 96.1 %
 - D) 3.2 %
 - E) 6.9 %
- 7. Which of the following exhibits the correct orders (large to small) for both atomic radius and ionization energy, respectively?
 - A) Te, Br, Se, and Te, Br, Se
 - B) Te, Se, Br, and Br, Se, Te
 - C) Br, Se, Te, and Te, Se, Br
 - D) Se, Br, Te, and Te, Br, Se
 - E) Br, Te, Se, and Se, Te, Br

- 8. What is the name of the compound whose formula is NO₂
 - A) Dinitrogen oxide
 - B) Nitrogen oxide
 - C) Nitrogen (V) oxide
 - D) Nitrogen pentoxide
 - E) nitrogen dioxide
- 9. How many protons, electrons, and neutrons,

respectively, does 16 O have?

- A) 8, 18, 16
- B) 8, 14, 8
- C) 8, 18, 8
- D) 8, 10, 8
- E) 8, 8, 8
- 10. How many grams of H₂O will be formed when 32.0 g H₂ is mixed with O₂ and allowed to react to form water?
 - A) 22.5 g
 - B) 144 g
 - C) 90.1 g
 - D) 45.0 g
 - E) 286 g
- 11. Which of the following atomic symbols is incorrect?
 - A) $^{39}_{19}$ K
 - B) 14 N
 - C) $^{14}_{6}$ C
 - D) $^{37}_{17}$ Cl
 - E) $^{32}_{15}$ F
- 12. How many atoms are represented by one molecule of aluminum dichromate, Al₂(Cr₂O₇)₃?
 - A) 25
 - B) 29
 - C) 9
 - D) 27
 - E) 14
- 13. Which of the following BEST describes alkali metal?
 - A) They have one valence electron, and they form ions with a 1+ charge.
 - B) They have one valence electron, and they form ions with a 2- charge
 - C) They have one valence electron, and they form ions with a 1- change.
 - D) They have two valence electrons, and they form ions with a 2+ charge.
 - E) They have two valence electrons, and they form ions with a 2- charge.

 14. Which of the following is the atomic number of a halogen? A) 17 B) 136 C) 27 D) 10 E) 13 	22. An atom with 15 protons and 16 neutrons is an atom of A) S B) Pd C) Rh D) P E) Ga
15. The cesium 131 nuclide has a half life of 30 years. After 90 years, about 6 g remains. The original mass of the cesium 131 sample is closest to A) 70 g B) 30 g C) 60 g D) 40 g E) 50 g	 23. 1s²2s²2p⁶3s²3p⁶ Represents this type of element A) Noble Gases B) Halogens C) Alkali Metals D) Metal/Non-metal E) Alkaline Earth Metals 24. Nitrogen, Phosphorus, Sulfur, Oxygen represent these elements
 16. Balance the following equation in standard form and determine the sum of the coefficients. FeO(s) + O₂(g) → Fe₂O₃(s) A) 7 B) 3 C) 14 D) 6 E) 4 	A) Alkali Metals B) Noble Gases C) Non-metal D) Alkaline Earth Metals E) Halogens 25. The cation of table salt is made from one of these types of elements A) Alkaline Earth Metals B) Noble Gases
17. Calculate the molar mass of NaHSO ₄ . A) 132 g/mol B) 124 g/mol C) 120 g/mol D) 100 g E) 120 g	C) Alkali Metals D) Metal/Non-metal E) Halogens 26. These elements become more reactive as you decrease their atomic number. A) Alkaline Earth Metals
 18. How many d electrons are there in an iron atom? A) 3 B) 6 C) 26 D) 56 E) 2 	B) Metal/Non-metal C) Halogens D) Noble Gases E) Alkali Metals 27. Barium is this type of element
 19. If a 100g sample of platinum metal has a volume of 4.668 mL, what is the density of platinum in g/cm³? A) 2.14 g/cm³ B) 0.0467 g/cm³ C) 467 g/cm³ D) 21.4 g/cm³ E) none of these 	 A) Metal/Non-metal B) Halogens C) Alkaline Earth Metals D) Noble Gases E) Alkali Metals 28. What type of rxn is CH ₄ + O ₂ → CO ₂ + H ₂ O (unbalanced) A) synthesis
 20. What is the chemical formula for Mercury (I) oxide A) Hg₂O₄ B) HgO₂ C) HgO D) Hg₂O₂ 	B) decomposition C) combustion D) single replacement E) double replacement
E) Hg ₂ O 21. The prefix "penta" means A) 2 B) 3 C) 4 D) 5 E) 1	29. The number of neutrons in one atom of ²⁰⁶ ₈₂ Hg is A) 124 B) 82 C) 288 D) 206 E) none of these

30.	The noble gas electron configuration for Cr ²⁺ is	37.
	A) $[Ar]4s^23d^2$	Which of the following is a product of α decay of 92 U?
	B) $[Ar]4s^23d^4$	A) 238
	C) $[Ar]4s^13d^5$	93 Np
	D) $[Kr]3d^4$	B) 235 92 Pu
	E) $[Ar]3d^4$	
	,	C) 234 90 Th
31.	28g of nitrogen dioxide and excess water are allowed to	D) 238
	produce nitric acid (HNO ₃) and nitrogen monoxide. If 22g	91 Pa
	of nitric acid are produced what is the percentage yield?	E) 235
	A) 100%	92 U
	B) 56.27%	
	C) 86.05%	38. Which of the following is an element?
	D) 113.64%	A) oxygen
	E) 72.43%	B) brass
		C) earth
32	Identify the missing particle in the following equation:	D) salt
0	238 4	E) water
	92 U \rightarrow 2 He + ?	,
	A) 234	39. A particular radioactive element has a half life of 6.95 days.
	⁹² U	What percent of the original sample is left after 15.0 days?
	B) 242	A) 11.2%
	⁹⁴ Pu	B) 22.4%
	C) 234	C) 44.8%
	90 Th	D) 47.3%
	D) 242 90 Th	E) 77.6%
	E) none of these	
	L) Hone of these	40. Which of the following elements is an alkaline earth metal?
33	According to the following Nuclear Equation,	A) Cu
55.	According to the following Pacifical Equation, $^{238}_{92}U \rightarrow ^{234}_{90}Th +,$ which particle is produced?	B) Fe
		C) Sc
	2	D) Ca
	B) $-\frac{0}{1}\beta$	E) Na
	C) $^{0}_{+1}\beta$	
	D) $\frac{1}{0}n$	41. How many neutrons are contained in an iodine nucleus
	Ε) ογ	with a mass number of 131?
	L) 0 V	A) 78
2.4	XXII 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	B) 53
	When balanced, what is the sum of the coefficients?	C) 127
	$Al_2(SO_4)_3+Ca(OH)_2 \longrightarrow Al(OH)_3+CaSO_4$	D) 131
	A) 3	E) 74
	B) 4	
	C) 9	42. Alpha particles are
	D) 10	A) protons
	E) 8	B) helium nuclei
		C) X rays
	How many protons are in a neutral atom with the electron	D) neutrons
	configuration below? 1s ² 2s ² 2p ⁶ 3s ² 3p ⁴	E) electrons
	A) 14	2) Clocatons
	B) 10	43. How many electrons are in the fourth principal energy
	C) 12	level $(n = 4)$ of one atom of Br?
	D) 17	A) 18
	E) 16	B) 2
		C) 7
	36. The electron configuration for the sulfur atom is	D) 17
	A) $1s^2 2s^2 2p^6 3s^2 3p^4$	E) none of these
	B) $1s^22s^22p^63s^23p^5$	b) none of these
	C) $1s^2 2s^2 2p^4$	
	D) $1s^22s^22p^63s^5$	
	E) $1s^22s^22p^63s^23p^2$	

44. How many atoms of hydrogen are in one molecule of CH ₃ Cl ⁴	
A) 3	original amount of radioactive nuclides in 15 years. What-
B) 30×10^{23}	is the half-life of this radioactive element?
C) 6×10^{23}	A) 8.7 years
D) 18×10^{23}	B) 33. years
E) 6	C) 92.0 years
2) 0	D) 2.5 years
45 Titonium (IV) avida has the formula	E) 8.0 years
45. Titanium(IV) oxide has the formula	12) 0.0 years
A) Ti(IV)O	TT 4 C 11 '
B) TiO_2	Use the following to answer question 53:
C) TiO ₄	Consider the following molecules.
D) Ti_4O_2	$I.BF_3$
E) Ti ₄ O	II.CHBr ₃ (C is the central atom)
,	$III.Br_2$
46. Which of the following elements is most similar to lithium?	IV.XeCl ₂
A) Na	V.CO
B) Hg	VI.SF ₄
C) Mg	Select the molecule(s) that fit the given statement.
D) Au	
E) He	53. These molecules follow the octet rule.
	A) II, III, V
47. The chemical formula for dicarbon hexahydride is	B) I, IV, VI
A) C ₃ H ₈	C) I, III, IV, VI
· · · · · · · · · · · · · · · · · · ·	D) I, II, IV
C) CH ₄	E) III, V, VI
D) CH	
E) C_2H_6	Use the following to answer questions 54-58:
	$\underline{\hspace{0.5cm}}$ H ₂ (g) + $\underline{\hspace{0.5cm}}$ CO (g) \rightarrow $\underline{\hspace{0.5cm}}$ CH ₃ OH (l)
48. The number of a certain radioactive nuclide present in a	68.5 kg
sample decays from 160. to 20. in 32 minutes. What is	
the half-life of this radioactive species?	54. Which of the following sets of coefficients represent
A) 21 minutes	those of the balanced equation?
B) 16 minutes	A) 1, 1, 1
,	B) 2, 2, 1
D) 11 minutes	C) 1, 2, 2
E) 6 minutes	D) 2, 1, 2
	E) 2, 1, 1
49. Which of the following has the electron	
configuration $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^5$?	55. How many moles of the product are produced?
A) Ca	A) 8.60×10^3
B) Cl	B) 4.27×10^3
C) Br	C) 2.45×10^3
D) Cr	D) 2.14×10^3
•	E) 8.54×10^3
E) Mn	E) 8.34 X 10°
50 When an electron is the second state of the decision of	56 Whatiathanana 111164 and 11111 257 104 2
50. When an electron in the ground state absorbs energy, it	56. What is the percent yield if the actual yield is $3.57 \times 10^4 \text{ g}$?
goes to a(n)state.	A) 92%
A) ionic	B) 88%
B) stable	C) 46%
C) excited	D) 103%
D) lower	E) 76%
E) frenetic	
2) Helicule	57. What was the theoretical yield?
51 Consider a cortain type of nucleus that has a rate constant	
51. Consider a certain type of nucleus that has a rate constant	A) $3.57 \times 10^4 \text{ g}$
of 2.10 X 10 ⁻² min ⁻¹ . Calculate the time required for the	B) 2.45×10^3
sample to decay to one fourth of its initial value.	C) $7.83 \times 10^4 \text{ g}$
A) 66.0 min	D) 0.456 g
B) 2.10 min	E) Not able to be determined
C) 41.3 min	
D) 0.0420 min	
E) 33.0 min	

	How many moles of H_2 were needed to use up all of the CO? A) 2.74×10^2 B) 8.60×10^3 C) 4.89×10^3 D) 1.20×10^5 E) 3.56×10^3	 66. The symbol for the element strontium is A) Str B) Sr C) St D) Sm E) S 67. Rutherford's experiment was important because it showed:
59.	An element has the electron configuration [Kr]5s ² 4d ¹⁰ 5p ² . The element is a(n) A) actinide. B) nonmetal. C) lanthanide. D) transition element. E) metal.	 A) the mass of the atom is uniformly distributed throughout the atom. B) a zinc sulfide screen scintillates when struck by a charged particle. C) an atom is mostly empty space. D) gold foil can be made to be only a few atoms thick. E) radioactive elements give off alpha particles.
60.	Which type of rxn: HCl+ KOH→ KCl + H ₂ O (unbalanced) A) Double Replacement B) Combustion C) decomposition D) Single Replacement E) Synthesis	68. When ethane (C ₂ H ₆) is reacted with oxygen in the air, the products are carbon dioxide and water. This process requires mol of oxygen for every 1.13 mol of ethane. A) 2.82 B) 7.91 C) 1.13 D) 5.09
61.	How many neutrons are there in one atom of ⁴⁷ ₂₂ Ti? A) 68 B) 46 C) 22 D) 24 E) none of these	 E) 3.95 69. Calculate the number of moles in 2.43 kg of Be A) 0.270 B) 27.0 C) 843
	A 42.9-g sample of Ca contains how many calcium atoms? A) 6.45×10^{23} atoms B) 2.58×10^{25} atoms C) 42.9 atoms D) 1.07×10^{0} atoms E) 85.8 atoms	D) 270 E) 0.000270 70C ₃ H ₈ +O ₂ >CO ₂ +H ₂ O What are the coefficients when you balance the above equation? A) 1,1,1,1 B) 2,6,4,6 C) 4,7,5,2
	A phosphorus atom needs to gain electrons to achieve a noble gas configuration. A) 3 B) 6 C) 2 D) 4 E) 5	 D) 2,2,2,2 E) 1,5,3,4 71. Suppose the unbalanced reaction Ca₃(PO₄)₂ + H₂SO₄ → CaSO₄ + H₃PO₄ is carried out starting with 103 g of Ca₃(PO₄)₂ and plenty of H₂SO₄. How much phosphoric acid (H₃PO₄) will be produced?
	Which of the following could be an atomic number for a Halogen A) 4 B) 54 C) 35 D) 11	A) 65.1 g B) 108.0 g C) 39.5 g D) 59.3 g E) 88.9 g 72. How many atoms of oxygen are in one molecule of calcium
65.	Which of these is an element? A) brass B) silver C) iron ore D) water E) wood	hydrogen sulfate? A) 4 B) 8 C) 3 D) 5 E) 6

73.	How many molecules of CH ₄ are in 65 grams of CH ₄ ?	80. Which of the following best describes the "trend" for
	A) 3.1×10^{24} atoms	electronegativity across periods (L->R) and down groups,
	B) 4×10^{24} atoms	respectively (periods/groups)?
	C) 2.4×10^{24} atoms	A) Decrease / Increase
	D) 1.4×10^{24} atoms	B) Increase / Increase
	E) 2.5×10^{24} atoms	C) neither
		D) Decrease / Decrease
74.	Antimony can be represented by which of the following	E) Increase / Decrease
	noble gas configurations?	
	A) $[Kr]5s^24d^{10}5p^6$	81. Phosphoric acid can be prepared by reaction of sulfuric acid
	B) $[Kr]5s^25d^{10}5p^6$	with "phosphate rock" according to the equation:
	C) $[Kr]5s^24d^{10}5p^5$	$C_0(PO) + 2USO \rightarrow 3C_0SO + 2UPO$
	D) $[Kr]5s^24d^{10}5p^3$	$\operatorname{Ca_3(PO_4)_2} + \operatorname{3H_2SO_4} \longrightarrow \operatorname{3CaSO_4} + \operatorname{2H_3PO_4}$
	E) $[Kr]5s^25d^{10}5p^5$	Suppose the reaction is carried out starting with plenty of
		$Ca_3(PO_4)_2$ and 75.0 g of H_2SO_4 . How many moles of
75.	What is the mass of 8 atom(s) of copper in grams?	phosphoric acid can be produced?
	A) 6.022×10^{23} g	A) 49.98 mol
	B) 8.44×10^{-22} g	B) 1.15 mol
	C) $1.18 \times 10^{21} \text{ g}$	C) 0.51 mol
	D) $4.78 \times 10^{-24} \mathrm{g}$	D) $4.9 \times 10^3 \text{ mol}$
	E) 508.4 g	E) Cannot be determined
	1) 300.16	2) Camio Co accommod
76	What type of reaction is $Mg + O_2 \rightarrow MgO$ (unbalanced)?	82. Consider the following reaction:
0.	A) Double Replacement	$CH_4(g) + 4Cl_2(g) \rightarrow CCl_4(g) + 4HCl(g)$
	B) Synthesis	
	C) Single Replacement	What mass of CCl ₄ is formed by the reaction of 5.17 g of
	D) decomposition	methane with an excess of chlorine?
	E) Combustion	A) 795 g
	L) Combustion	B) 12.4 g
77.	230 m	C) 49.6 g
, , .	When ²³⁰ Th decays by producing an alpha particle, the	D) 0.54 g
	product nuclide is	E) none of these
	A) 226 Ra	00 1 1 100 1
		83. An atom with 45 protons has a mass number of 100. It
	B) $\frac{226}{88}Fr$	must contain how many neutrons?
		A) 45
	C) $\frac{226}{88}$ Ra	B) 100
	D) $\frac{226}{88}At$	C) 55
		D) 145
	E) $\frac{226}{89}$ Ra	E) none of these
70	Wilest is the same of the second first fourth and the	84. A homogeneous mixture is also called
10.	What is the sum of the coefficients for the reaction:	A) a pure substance.
	$4NH_3(g) + 7O_2(g) \rightarrow 4NO_2(g) + 6H_2O(g)$	B) an element.
	A) 16	C) a solution.
	B) 21	D) a heterogeneous mixture.
	C) 10	E) a compound.
	D) 13	-
	E) 4	85. In the following nuclear equation, identify the missing produc
79	An atom that has an electron configuration of	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$1s^22s^22p^63s^23p^6$ is classified as	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	A) an alkali metal	Ti
	B) a halogen	B) 46
	C) a transition metal	²² Ti
		C) 42
	1)) an alkaline earth element	
	D) an alkaline earth element E) a poble gas element	¹⁸ Ar
	D) an alkaline earth element E) a noble gas element	18 Ar D) 46 21 Sc

86.	The name for NaHCO ₃ is	94. Which formula represents a trigonal pyramidal molecule
	A) sodium(I) hydrogen carbonate	(molecular geometry)?
	B) sodium hydrogen carbonate (sodium bicarbonate)	A) NH ₃
	C) sodium(I) bicarbonate	B) CaCl ₂
	D) sodium carbonate	C) HBr
	E) none of these	D) CH ₄
07	XXII.1 6.1 6.11	E) Br ₂
87.	Which of the following involves a chemical change?	05 The manimum # of a allowed in cook of the Joshitele in
	A) chopping wood B) condensation of water	95. The maximum # of e- allowed in each of the <i>d</i> orbitals is
	B) condensation of water C) cooking most	A) 32
	C) cooking meat D) melting ice	B) 10 C) 2
	D) melting ice E) boiling water	D) 4
	L) boiling water	E) 18
88	When magnesium and oxygen form a bond 2 electrons will be	L) 10
00.	A) Lost by oxygen gained by magnesium	96. Which of the following contains one or more covalent bonds?
	B) Lost by magnesium gained by oxygen	A) Cs ₂ O
	C) Shared equally	B) CO ₂
	D) evenly distributed	C) BaBr ₂
	E) shared unequally	D) CaO
	2) Shared anoquany	E) NaCl
89.	An example of a mixture is	
	A) gold	97. How many grams of Ca(NO ₃) ₂ can be produced by reacting
	B) mercury liquid	excess HNO ₃ with 5.65 g of Ca(OH) ₂ ?
	C) the air in this room	A) 11.3 g
	D) purified water	B) 25.0 g
	E) hydrogen fluoride	C) 5.65 g
		D) 12.5 g
90.	How many protons, electrons, and neutrons, respectively, does	E) 6.26 g
	²⁷ Al ³⁺ have?	
	A) 13, 10, 14	98. Rank the following bonds from least polar to most polar :
	B) 13, 13, 13	Si-Cl P-Cl Mg-Cl S-Cl
	C) 13, 10, 27	A) Mg-Cl, S-Cl, P-Cl, Si-Cl
	D) 13, 13, 14	B) S-Cl, P-Cl, Mg-Cl, Si-Cl
	E) 13, 13, 27	C) S-Cl, P-Cl, Si-Cl, Mg-Cl
	, -, -, -	D) Mg-Cl, Si-Cl, P-Cl, S-Cl
91.	A stable element will <u>usually</u> have how many electrons?	E) P-Cl, S-Cl, Si-Cl, Mg-Cl
	A) Zero	99. How many molecules of the sodium containing product is made
	B) 6	at the end of the single displacement reaction below?
	C) 8	1
	D) 32	$Na_{(1)} + Al_2O_{3(s)} \rightarrow$
	E) 18	5.79g A) 1.02 x 10 ²³ molecules
		B) 7.58 x 10 ²² molecules
92.	How many nitrogen atoms are indicated in Al(NO ₃) ₃ ?	C) 2.16 x 10 ²² molecules
	A) 0	D) 3.36 x 10 ²⁴ molecules
	B) 9	E) 2.16 x 10 ²⁴ molecules
	C) 1	L) 2.10 x 10 inforcedies
	D) 3	100. Balance the equation
	E) 4	$\operatorname{Zn}(s) + \operatorname{H}_3\operatorname{PO}_4(aq) \rightarrow \operatorname{Zn}_3(\operatorname{PO}_4)_2(s) + \operatorname{H}_2(g)$
02	The electron configuration of comban is 1 × 2 × 2 × 2 × 2 × 11	$\sum_{i=1}^{n} S_{i} + II_{2} O_{4} II_{2} O_{4} II_{2} S_{i} + II_{2} S_{i} $
93.	The electron configuration of carbon is $1s^2 2s^2 2p^2$. How many	
	more electrons does carbon need to satisfy the octet rule?	
	A) 8 B) 5	
	B) 5 C) 2	
	D) 1 E) 4	
	<i>₽</i> / ·	1

Has not been checked! Please tell me if you see typos!!!

Answer Key

1.	C
2.	electron, proton,
	neutron
3.	В
4.	E
5.	D
6.	В
7.	В
8.	E
9.	E
10.	E
11.	В
12.	В
13.	A
14.	A
15.	E
16.	A
17.	C
18.	В
19.	D
20.	E
21.	D
22.	D
23.	A
24.	C
25.	C
26.	C
27.	C
28.	C
29.	A
30.	E
31.	C
	C A
33. 34.	A C
J 4 .	C

70.	E
71.	A
72.	В
73.	E
74.	D
75.	В
76.	В
77.	C
78.	
79.	E
80.	
81.	C
82.	C C
83.	C
84.	C
85.	D
86.	В
87.	C
88.	
89.	C
90.	A
91.	C
92.	D
93.	
94.	A
95.	C
96.	В
97.	D
98.	C
99.	
100.	3Zn(s) +
	$2H_3PO_4(aq)$
	$Zn_3(PO_4)_2(s) +$
	$3H_2(g)$

Here is an additional practice test another teacher made.

(It has not been checked yet, so please let me know if you find any issues/typos!)

https://tinyurl.com/3htmbfpz

